Policy, Practical Tools, Tips, and Techniques for Implementing SB 743 Guidance

2015 AEP Conference
Summary

Practicum Addressing the Preliminary Discussion Draft Guidelines Updates

- VMT Thresholds of Significance
- VMT Evaluation Data and Modeling Tools
- Mitigation and Alternatives Analysis
- Traffic Safety
SB 743 Implementation Perspectives

- Regional Agency
- County
- City
- Transportation Consultant
- CEQA/Planning Consultant
Background:

- **MPO/RTPA/CMA**
- Assists Local Governments in Solving Common Problems and Addressing Public Policy Issues that are Regional or Multi-jurisdictional
- Conducts Travel Demand Modeling to Satisfy a Series of Federal and State Requirements and to Assess the Implications of Future Growth on the Transportation System
- Adopted 2040 Regional Transportation Plan-Sustainable Communities Strategy in 2013
Draft CEQA Guidelines Implementation Challenges

- Use of Regional Average VMT by Land Use Type in Thresholds of Significance
- Consistent Comparisons of Results from Regional Travel Demand Model vs. Other Models
- Incorporation of both VMT and Local LOS Standards and Fee Programs into Regional Planning
- CMA Land Use Analysis Program Requirements
Background:

- Rural and Urban
- LOS-Based Local CEQA Threshold
- General Plan Has LOS Based Policies
- No Current Effort to Adopt VMT Threshold
County of Santa Barbara

- **Draft CEQA Guidelines Implementation Challenges:**
 - Urban vs. Rural Density
 - Urban Vs. Rural Multi-Modal Availability
 - Applicability of Mitigation Measures in Rural Areas
 - Inconsistency with General Plan Policies
 - Reliance on Previous CEQA Documents
 - Community Concerns
City of San Luis Obispo

Background

- 2010 - HCM2010
- 2013/2014 - City General Plan Update
- Today - Drafting Traffic Impact Guidelines

GP POLICY

<table>
<thead>
<tr>
<th>CEQA</th>
<th>GP POLICY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Miles Traveled</td>
<td>MMLOS</td>
</tr>
<tr>
<td>Induced Travel</td>
<td>Modal Priorities</td>
</tr>
<tr>
<td>Safety</td>
<td>Neighborhood Traffic</td>
</tr>
</tbody>
</table>

- Public Expectations on Reporting Operational Impacts
- Political Acceptance of LOS as Political Tool Only
- Lower Auto LOS Thresholds in Infill Areas
- Have Had Policy Thresholds Since 1990s
SB 743 Does Not Alter a Lead Agency’s Ability to Adopt its Own Specific Thresholds

Factors that Might Indicate whether the Amount of a Project’s VMT May Be Significant:

- A development project that results in VMT greater than regional average for the land use type may indicate a significant impact.
- Projects that locate in areas served by transit, where VMT is generally known to be low, may be considered to have a less than significant impact.
- Development projects that result in net decreases in VMT, compared to existing conditions, may be considered to have a less than significant transportation impact.
- Land use plans that are either consistent with an SCS, or that achieve at least an equivalent reduction in VMT as projected to result from implementation of an SCS, generally may be considered to have a less than significant impact.
The lead agency’s evaluation of the vehicle miles traveled associated with a project is subject to a *rule of reason*.

A lead agency may use models to estimate a project’s vehicle miles traveled, and may revise those estimates to reflect *professional judgment based on substantial evidence*. Any assumptions used to estimate vehicle miles traveled and any revisions to model outputs should be *documented and explained* in the environmental document prepared for the project.
Mitigating VMT Impacts

- Left to local discretion
- List of recommended measures provided in Guidelines Appendix F: Energy Conservation

- Improving or increasing access to transit.
- Increasing access to common goods and services, such as groceries, schools, and daycare.
- Incorporating affordable housing into the project.
- Improving the jobs/housing fit of a community.
- Incorporating neighborhood electric vehicle network.

- Traffic calming
- Providing bicycle parking.
- Limiting parking supply.
- Unbundling parking costs.
- Parking or roadway pricing or cash-out programs.
- Implementing a commute reduction program.
- And more....
Local Traffic Safety

- Local Traffic Safety remains an appropriate topic for evaluation
 - Increased exposure of cyclists and pedestrians (e.g., removing facilities, increasing crossing distances)
 - Queues extending into the mainline
 - Speed differentials >15 mph between adjacent travel lanes
 - Increased motor vehicle speeds
 - Increased distance between bike or ped crossings
Revised Appendix G: Transportation
Would the Project:

- Conflict with a plan, policy, or ordinance addressing the safety or performance of the circulation system, including transit, roadways, bicycle lanes and pedestrian paths?

- Cause VMT (per capita, per service population or other appropriate measure) that exceeds the regional average for that land use?

- Result in substantially unsafe conditions for...users of public rights of way...?

- Substantially induce additional automobile travel by increasing physical roadway capacity in congested areas or by adding new roadways to the network?
New Appendix F examples of project alternatives that may reduce vehicle miles traveled include, but are not limited to:

- Locating the project in an area of the region that already exhibits below average vehicle miles traveled.
- Locating the project near transit.
- Increasing project density.
- Increasing the mix of uses within the project, or within the project’s surroundings.
- Increasing connectivity and/or intersection density on the project site.
- Deploying management (e.g. pricing, vehicle occupancy requirements) on roadways or roadway lanes.
Existing Locally Adopted Threshold:

Significant Traffic Impact Occurs When The Addition of Project Traffic to An Intersection:

<table>
<thead>
<tr>
<th>LEVEL OF SERVICE (including project)</th>
<th>INCREASE IN V/C GREATER THAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.20</td>
</tr>
<tr>
<td>B</td>
<td>0.15</td>
</tr>
<tr>
<td>C</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Or The Addition Of:</td>
</tr>
<tr>
<td>D</td>
<td>15 trips</td>
</tr>
<tr>
<td>E</td>
<td>10 trips</td>
</tr>
<tr>
<td>F</td>
<td>5 trips</td>
</tr>
</tbody>
</table>
Significant Traffic Impact Occurs When:

- Project access to a major road or arterial requires driveway that would be unsafe, requires new signal, or major revisions to existing signal

- Project adds traffic to a roadway that has design features or receives use incompatible with substantial traffic increase

- Project traffic would utilize a substantial proportion of intersection capacity degrading LOC A-C to LOS D or lower
Vehicle Miles Traveled & Induced Traffic

Regional VMT/Trip: **10.7**
City VMT/Trip: **3.6**

Baseline VMT
- Regional VMT/Trip by Landuse (Existing and/or Forecasted ?)

Project VMT
- Small Projects: Quick Response
- Large Projects: Modeled

Significance Threshold
- Greater than Regional Average

Induced Traffic
- Increases Regional Average VMT/Trip
- Creates some level of excess capacity.

<table>
<thead>
<tr>
<th>Project Trip Generation</th>
<th>VMT Estimation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-200 peak hour trips</td>
<td>Quick-response VMT estimation tool, such as VMT+ (http://www.fehrandpeers.com/vmt/)</td>
</tr>
<tr>
<td>200+ peak hour trips</td>
<td>City of San Luis Obispo travel demand model</td>
</tr>
</tbody>
</table>
Safety

Turn Pocket Capacity
- 95th Percentile Queue Exceeds Pocket Length

Access Management
- Access Within Functional Area
- Driveway Frequency

Conflict Point Analysis

Highway Safety Manual
- Corridor Collision Rate